Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

REGULATION AND HETEROLOGOUS EXPRESSION OF P450 ENZYME SYSTEM COMPONENTS OF THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM.

Identifieur interne : 000675 ( Main/Exploration ); précédent : 000674; suivant : 000676

REGULATION AND HETEROLOGOUS EXPRESSION OF P450 ENZYME SYSTEM COMPONENTS OF THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM.

Auteurs : Venkataramanan Subramanian [États-Unis] ; Jagjit S. Yadav

Source :

RBID : pubmed:19730708

Abstract

Phanerochaete chrysosporium is widely used as a model organism to understand the physiology, enzymology, and genetics of lignin degradation by white rot fungi and is known for its ability to metabolize and detoxify a wide range of environmental chemicals. Our pre-genomic efforts and the recent whole genome sequencing by the Joint Genome Institute of the US-DOE have revealed that this fungus carries a well developed P450 enzyme system, consisting of multiple P450 monooxygenases and a common P450 oxidoreductase. The entire P450ome of this organism comprises of ~150 cytochrome P450 monooxygenases, mostly arranged in gene clusters and classifiable into multigene families. Except for the structurally and functionally conserved fungal P450 families such as CYP51, CYP61, and CYP53, other P450 enzymes in this organism have largely unknown function and will require functional characterization. These new P450 enzymes may likely have roles in biodegradation activity and physiology of this ligninolytic fungus. Our pre- and post-genomic efforts to understand the functional role of P450 enzyme systems in P. chrysosporium have focused on the regulation of expression of the first identified family of P450 enzymes, the CYP63 family, and genome-wide regulation of the other P450 families using a custom-designed P450 microarray. The genomically-linked CYP63 member P450s were found to be differentially regulated under varying physiological and/or biodegradation conditions. Results on the heterologous expression of this family of monooxygenases in different prokaryotic and eukaryotic expression systems are presented and the inherent problems associated with the expression of these membrane proteins are discussed. Further, we report the expression and purification of the white rot fungal cytochrome P450 oxidoreductase (POR), the electron transfer component of its P450 enzyme system, required for P450 catalysis. The reported studies have uncovered the hitherto unknown regulatory aspects of the P450 enzyme system in P. chrysosporium and generated useful expression tools and knowledgebase to pursue further studies on functional analysis of the P450 contingent in this model white rot fungus.

DOI: 10.1016/j.enzmictec.2007.09.001
PubMed: 19730708
PubMed Central: PMC2736883


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">REGULATION AND HETEROLOGOUS EXPRESSION OF P450 ENZYME SYSTEM COMPONENTS OF THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM.</title>
<author>
<name sortKey="Subramanian, Venkataramanan" sort="Subramanian, Venkataramanan" uniqKey="Subramanian V" first="Venkataramanan" last="Subramanian">Venkataramanan Subramanian</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yadav, Jagjit S" sort="Yadav, Jagjit S" uniqKey="Yadav J" first="Jagjit S" last="Yadav">Jagjit S. Yadav</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:19730708</idno>
<idno type="pmid">19730708</idno>
<idno type="doi">10.1016/j.enzmictec.2007.09.001</idno>
<idno type="pmc">PMC2736883</idno>
<idno type="wicri:Area/Main/Corpus">000600</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000600</idno>
<idno type="wicri:Area/Main/Curation">000600</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000600</idno>
<idno type="wicri:Area/Main/Exploration">000600</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">REGULATION AND HETEROLOGOUS EXPRESSION OF P450 ENZYME SYSTEM COMPONENTS OF THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM.</title>
<author>
<name sortKey="Subramanian, Venkataramanan" sort="Subramanian, Venkataramanan" uniqKey="Subramanian V" first="Venkataramanan" last="Subramanian">Venkataramanan Subramanian</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yadav, Jagjit S" sort="Yadav, Jagjit S" uniqKey="Yadav J" first="Jagjit S" last="Yadav">Jagjit S. Yadav</name>
</author>
</analytic>
<series>
<title level="j">Enzyme and microbial technology</title>
<idno type="eISSN">1879-0909</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phanerochaete chrysosporium is widely used as a model organism to understand the physiology, enzymology, and genetics of lignin degradation by white rot fungi and is known for its ability to metabolize and detoxify a wide range of environmental chemicals. Our pre-genomic efforts and the recent whole genome sequencing by the Joint Genome Institute of the US-DOE have revealed that this fungus carries a well developed P450 enzyme system, consisting of multiple P450 monooxygenases and a common P450 oxidoreductase. The entire P450ome of this organism comprises of ~150 cytochrome P450 monooxygenases, mostly arranged in gene clusters and classifiable into multigene families. Except for the structurally and functionally conserved fungal P450 families such as CYP51, CYP61, and CYP53, other P450 enzymes in this organism have largely unknown function and will require functional characterization. These new P450 enzymes may likely have roles in biodegradation activity and physiology of this ligninolytic fungus. Our pre- and post-genomic efforts to understand the functional role of P450 enzyme systems in P. chrysosporium have focused on the regulation of expression of the first identified family of P450 enzymes, the CYP63 family, and genome-wide regulation of the other P450 families using a custom-designed P450 microarray. The genomically-linked CYP63 member P450s were found to be differentially regulated under varying physiological and/or biodegradation conditions. Results on the heterologous expression of this family of monooxygenases in different prokaryotic and eukaryotic expression systems are presented and the inherent problems associated with the expression of these membrane proteins are discussed. Further, we report the expression and purification of the white rot fungal cytochrome P450 oxidoreductase (POR), the electron transfer component of its P450 enzyme system, required for P450 catalysis. The reported studies have uncovered the hitherto unknown regulatory aspects of the P450 enzyme system in P. chrysosporium and generated useful expression tools and knowledgebase to pursue further studies on functional analysis of the P450 contingent in this model white rot fungus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">19730708</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1879-0909</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>43</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2008</Year>
<Month>Aug</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Enzyme and microbial technology</Title>
<ISOAbbreviation>Enzyme Microb Technol</ISOAbbreviation>
</Journal>
<ArticleTitle>REGULATION AND HETEROLOGOUS EXPRESSION OF P450 ENZYME SYSTEM COMPONENTS OF THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM.</ArticleTitle>
<Pagination>
<MedlinePgn>205-213</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Phanerochaete chrysosporium is widely used as a model organism to understand the physiology, enzymology, and genetics of lignin degradation by white rot fungi and is known for its ability to metabolize and detoxify a wide range of environmental chemicals. Our pre-genomic efforts and the recent whole genome sequencing by the Joint Genome Institute of the US-DOE have revealed that this fungus carries a well developed P450 enzyme system, consisting of multiple P450 monooxygenases and a common P450 oxidoreductase. The entire P450ome of this organism comprises of ~150 cytochrome P450 monooxygenases, mostly arranged in gene clusters and classifiable into multigene families. Except for the structurally and functionally conserved fungal P450 families such as CYP51, CYP61, and CYP53, other P450 enzymes in this organism have largely unknown function and will require functional characterization. These new P450 enzymes may likely have roles in biodegradation activity and physiology of this ligninolytic fungus. Our pre- and post-genomic efforts to understand the functional role of P450 enzyme systems in P. chrysosporium have focused on the regulation of expression of the first identified family of P450 enzymes, the CYP63 family, and genome-wide regulation of the other P450 families using a custom-designed P450 microarray. The genomically-linked CYP63 member P450s were found to be differentially regulated under varying physiological and/or biodegradation conditions. Results on the heterologous expression of this family of monooxygenases in different prokaryotic and eukaryotic expression systems are presented and the inherent problems associated with the expression of these membrane proteins are discussed. Further, we report the expression and purification of the white rot fungal cytochrome P450 oxidoreductase (POR), the electron transfer component of its P450 enzyme system, required for P450 catalysis. The reported studies have uncovered the hitherto unknown regulatory aspects of the P450 enzyme system in P. chrysosporium and generated useful expression tools and knowledgebase to pursue further studies on functional analysis of the P450 contingent in this model white rot fungus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Subramanian</LastName>
<ForeName>Venkataramanan</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yadav</LastName>
<ForeName>Jagjit S</ForeName>
<Initials>JS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 ES010210</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 ES010210-03</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Enzyme Microb Technol</MedlineTA>
<NlmUniqueID>8003761</NlmUniqueID>
<ISSNLinking>0141-0229</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19730708</ArticleId>
<ArticleId IdType="doi">10.1016/j.enzmictec.2007.09.001</ArticleId>
<ArticleId IdType="pmc">PMC2736883</ArticleId>
<ArticleId IdType="mid">NIHMS55778</ArticleId>
<ArticleId IdType="pii">S0141-0229(07)00303-1</ArticleId>
</ArticleIdList>
<pmc-dir>nihms</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Biodegradation. 2001;12(6):443-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12051650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1991 Sep 16;179(2):897-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1898410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Feb 14;34(6):1858-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7849045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2005 Jun;50(6):292-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15968506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1996 Sep 15;333(2):439-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8809085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2006 Dec;34(Pt 6):1165-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2002 Feb 14;93(2):143-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11738721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2003 Feb;38(1):10-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12553932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Feb 3;245(5):467-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7844820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Mar;59(3):756-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8481002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Nov;57(11):3310-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1781688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1995 Nov 22;216(3):1013-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7488173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Apr 1;315 ( Pt 1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 1995 Oct;6(5):494-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7579660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1992 May 1;294(2):735-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1567230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2001 May;58(5-6):737-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11437235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2004 Oct;65(5):559-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15378295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005 Jun 14;6:92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15955240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Dec;274(5):454-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16231151</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Yadav, Jagjit S" sort="Yadav, Jagjit S" uniqKey="Yadav J" first="Jagjit S" last="Yadav">Jagjit S. Yadav</name>
</noCountry>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Subramanian, Venkataramanan" sort="Subramanian, Venkataramanan" uniqKey="Subramanian V" first="Venkataramanan" last="Subramanian">Venkataramanan Subramanian</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000675 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000675 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19730708
   |texte=   REGULATION AND HETEROLOGOUS EXPRESSION OF P450 ENZYME SYSTEM COMPONENTS OF THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19730708" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020